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Preparation and electronic structure studies of high-spin organic
molecules are main research topics in modern magnetochemistry.
Because of their propensities for having triplet ground-states, two
types of molecules have been identified as prototypical high-spin
species: meta-phenylene-type and trimethylenemethane-type
(TMM-type) biradicals.1-5 Bond torsions modulate exchange
coupling in a variety ofmeta-phenylene-type biradicals,6 and we
have recently undertaken a magnetostructural study of the less-
studied TMM-type biradicals6-15 using a series of dinitroxides
that includes1 and 2.12,16 During our study of the magnetic
properties of crystalline solids of this series of biradicals, we
discovered that1 undergoes a phase transition that is accompanied
by hysteresis.

Crystal packing diagrams for1 and2 are very similar as shown
in Figure 1: unit cell and pertinent structural parameters are given
in Table 1.17 For both biradicals, the unit cell contains two
centrosymmetrically related dinitroxide molecules having phenyl
ring torsions in accord with our predictions12 as given in Table
1. The shortest NN/NO distances between molecules are given
in Table 1 and Figure 1. For1, the shortest NO distance is 5.02
Å between two molecules related by unit translation along the

a-axis, see Figure 1. The next shortest contact for1 is an NN
interaction between two centrosymmetrically related dinitroxide
molecules in two different layers along thea-axis. For2, the
corresponding intermolecular NN/NO distances between mol-
ecules are shorter, as given in Figure 1 and Table 1.

These structural elements and molecular packing allow us to
predict weak intramolecular exchange coupling (øT ) ca. 0.75
emu K/mol) and even weaker intermolecular coupling. The weak
intramolecular coupling is consistent with moderate spin density
in the phenyl rings oftert-butyl-phenyl nitroxides,12,18combined
with the phenyl torsions (with respect to the CdC coupler
fragment). In fact, weak intramolecular exchange was reported
by Iwamura and co-workers for the dinitroxide with R) CH3 (J
) +5.2 cm-1).16

Regardless of the structural similarities, the overall magnetic
behaviors of1 and2 are quite different as shown in Figure 2.19-27

As predicted,øT per dinitroxide is ca. 0.75 emu‚K/mol at 300 K
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Figure 1. Packing diagrams for1 (left) and2 (right).

Table 1. Unit Cell and Structural Parameters for1 and2

birad.
unit cell

parameters
shortest intermolecular

nitroxide distances
phenyl

torsionsa
nitroxide
torsionsb

1 a ) 6.2271 Å 5.02 Å (NN); 4.94 Å (NO); 54.8°, 56.2° 12.7°, 13.2°
b ) 12.170 Å 6.23 Å (NN) (55.5°)c (12.9°)c

c ) 17.882 Å
R ) 99.872°
â ) 99.659°
γ ) 95.631°

2 a ) 6.1933 Å 4.38 Å (NN); 4.47 Å (NO); 42.8°, 53.8° 29.0°, 28.8°
b ) 11.4950 Å 5.99 Å (NN) (48.3°)c (28.9°)c

c ) 17.478 Å
R ) 104.577°
â ) 99.635°
γ ) 94.942°

a Torsion angles between planes of phenyl rings and CdC. b Torsions
between N-O bond vectors and phenyl ring planes.c Average values.
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for both 1 and2, consistent with weakly coupled biradicals. As
the temperature is lowered,øT for 2 continues to follow the trend
expected for a weakly coupled biradical, but for1 a dramatic
deviation from biradical behavior is observed. NearT ) 60 K,
øT for 1 shows a precipitous decrease to 0.38 emu‚K/mol. This
behavior is consistent with weak intramolecular exchange coupling
until T ) 60 K, whereupon a phase transition causes a strong
antiferromagnetic alignment of individual nitroxide unitsbetween
two molecules. Moreover, this spin alignment must be character-
ized by an antiferromagnetic exchange parameter significantly
greater than the one characterizing intramolecular exchange,|Jintra|.
The most likely mechanism for this enhanced antiferromagnetic
coupling is a substantial decrease in intermolecular contacts.28 In
this way,øT is consistent withone spinper molecule below 60
K.29,30

Most importantly, theøT curve for1 shown in Figure 2 is not
followed when the temperature isincreasedfrom 2 to 300 K,
that is, hysteresis is observed.25 An expanded view of theøT data
between 50 and 90 K is shown in Figure 3. As seen in Figure 3,
the temperature at whichøT decreases on lowering the temperature
(Τ1/2V ) 67 K) is 13 K lower than the temperature at whichøT
increases when increasing the temperature (Τ1/2v ) 80 K).31 Thus,
crystals of1 exhibit a 13 K-wide hysteresis loop giving rise to
magnetic bistability.

We feel that this behavior may not be an anomaly, considering
related behaviors of bis(phenoxyl)3, and bis(semiquinone)4.
Biradical 3 was shown to exhibit rotamer bistability with

differential exchange coupling,8 while bis(semiquinone) complex
4 shows multiple frozen solution EPR signals consistent with a
rotamer distribution.32,33Biradicals5 and6 lack these behaviors.33

Given the similarities in packing between1 and 2 and our
observations of differential bond torsions in related biradicals, it
is tempting to hypothesize that aryl torsions are coupled to the
phase transition in crystals of1. Proof of this hypothesis awaits
low-temperature X-ray crystallographic analysis.

To our knowledge, this is the first report of magnetic bistability
in an organicbiradical, and we feel that our findings further
demonstrate that magnetochemistry is an excellent vehicle for
studying crystal engineering.1 Future reports will include low-
temperature structural and spectroscopic studies.
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Figure 2. Plots oføT vs temperature for1 ([) and2 (O). Figure 3. Hysteresis loop for1.
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